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Abstract

The purpose of this report is to provide parents with a decision rule for deciding which
hospital to go to for a procedure given the specific condition of their children. To
address this question, we examine the mortality rate for each procedure type in a hospital.
Specifically, we fit a Bayesian joint model of mortality rates and hospital volumes to
estimate the mortality rates by hospital and procedure. After ranking the hospital
performances for the given procedures, we find that Texas Children’s Hospital, UF Health
Shands Children’s Hospital and Helen DeVos Children’s Hospital are the best hospitals
for pediatric cardiovascular procedures. In addition to having good predictive output,
our ranking system allows for us to quantify the uncertainty surrounding parameter and
ranking estimates, allowing us to rigorously conclude that our findings are significant.

1 Introduction

As a national leader in health care transparency and accountability, the Society of Thoracic
Surgeons (STS) believes that the public has a right to know the quality of surgical outcomes. In
this report, we investigate mortality rates, both overall and stratified by procedure complexity,
for the hospitals participating in the STS public reporting, leading to a ranking of hospitals in
terms of their performance in conducting pediatric cardiovascular surgeries.

Ranking that is based solely on average mortality rate will be biased because of the
existence of case mix. A hospital’s case mix takes into account many different factors such as
cardiac surgeon ratings and procedure types. For example, hospitals specialized in pediatric
cardiology may treat more patients with more complicated and higher-risk conditions than
other hospitals and, therefore, operate on patients with a lower chance of survival.

To model the hospital mortality rates, we start with a Binomial regression model with
random effects that account for the variability between the hospitals and procedure types.
However, we wanted to incorporate the effects of hospital volumes on the mortality rates
more directly to adjust for case-mix, leading us to a Bayesian joint modeling framework where
we model the hospital volumes as Poisson distributed. We further added interaction effects
between hospital size and procedure types to allow the random effect of procedure types to
vary among hospitals. The Bayesian joint modeling with interaction effects is the primary
model we use to address the goals of our analysis.

To rank the hospital performance for a given procedure type, we compare hospitals based
on the mortality risk, which is defined as the sum of the hospital effect and the interaction effect
between the hospital size and the given procedure type. Meanwhile, we take the uncertainty
during sampling into account by aggregating the ranking list from each iteration.

The reminder of this report is structured as follows. We briefly review the data used
and our initial findings. We present the joint model and the various features it’s designed to
identify. We review our key findings in the results section and conclude with our answers to
the key questions presented above and propose possible extensions. An appendix with further
details of our analysis can be found after the references.

2 Materials and Methods

2.1 Data

We used the public reporting data collected from 82 participant hospitals in the STS Congenital
Heart Surgery Database[1] for our analysis. The STS data presents hospital-specific results
for procedures in each of the 5 STAT Mortality Category during the 2015-2018 reporting
period. STAT Category 1 includes the least complex operations, which are associated with the
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lowest risk of mortality. STAT Category 5 includes the most complex operations, which are
associated with the highest risk of mortality. The hospital-specific results include the number
of pediatric surgical procedures and the number of deaths resulting from those procedures.

Because the STS dataset does not include any additional profile information about the
participant hospitals, we extracted hospital-level covariates from the U.S. News[2] and the
American Hopsital Directory[3] to supplement the STS dataset. These hospital-level covariates
include the number of beds, the NICU level, the cardiovascular surgery rating, the case-mix
index, and the location (rural or urban) of the hospitals.

2.2 Exploratory Data Analysis

In this section, we provide a brief summary of our findings from the exploratory data analysis.
A more detailed walk through of the EDA can be found in the appendix.

1. Per George et al.[4], we considered potential relationship between hospital mortality rates
and volume. We found that low volume hospitals tend to have high mortality rates.

2. Data sparsity issue. Some low volume hospitals with zero mortality rates only perform a
few procedures per year. The mortality rates from these hospitals are quite unstable,
and therefore we should be careful about shrinkage in a hierarchical modeling setting.

3. Regardless of the hospital volumes, hospital mortality rates increase with the increasing
level of STAT Mortality Category. See Figure 6 in the appendix.

4. Large hospitals operate more on complex and risky procedures while small hospitals
treat more patients with less complex and risky conditions. Therefore, we wanted to
include interaction effects between hospital sizes and procedure types.

5. We examined whether there is an association between hospital mortality rates and
hospital-level covariates in both EDA and posterior inference. We found that the
covariates are not predictive of mortality rates and decided not to include them in our
primary model.

3 Model

To shed light on the issue of whether hospital mortality rates are related to volume, we
consider a Bayesian joint modeling of mortality rates and hospital volumes for our STS data.
Joint models provide more efficient estimates of the hospital-specific effects on both mortality
rates and hospital volumes, and reduce bias in the estimates of the overall effect of hospital
performance.

Let h (h = 1, . . . ,H) index the hospital, and j (j = 1, . . . , 5) index the procedure type,
Yh,j denotes the number of deaths and nh,j denotes the number of procedures for the j-th
procedure done in hospital h. We assume Yh,j is generated from the following process:

Yh,j | αh, βch,j , εh,j ∼ Binomial(nh,j , ph,j), logit(ph,j) = αh + βch,j + εh,j . (1)

Vh | φh, λ, αh ∼Pois(φh exp (λαh)) (2)

In the first half of the joint model, ph,j is the underlying mortality rate, which is determined
by a hospital effect αh and a cluster-procedure interaction effect βch,j with logit link.

Regarding the clustered procedure-hospital interactions, we decide the cluster membership
based on the hospital volume. More specifically, let Vh denote the volume of the h-th hospital,
i.e., number of total procedures during the time period of interest. If

∑H
h′=1 I(Vh ≥ Vh′) ≤ τH ,

where τ is a volume quantile threshold to be specified, hospital h belongs to the cluster of
small hospitals (ch = 1), whereas hospital h is categorized as a large hospital (ch = 2) if∑H

h′=1 I(Vh ≥ Vh′) ≥ τH. The primary reason we consider a clustered procedure-hospital
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interaction effect instead of a direct interaction between procedure and hospital is to avoid
parameter redundancy and identifiability issue.

In the second part of the joint model, we assume that the volume of hospitals Vh is related
to baseline performance αh due to case-mix. Therefore we apply Poisson regression to model
this relationship, where φh controls for over-dispersion and λ determines the relationships
between αh and Vh. Intuitively, λ should be negative so that high mortality risk inferred from
high αh will induce low volume in hospital h. We show in the later sections that our model
reflects this intuition with high significance.

For the implementation of this joint model, we propose a fully Bayesian approach with the
following weakly informative priors:

αh | σ2α ∼ N (0, σ2α), βch,j | σ
2
β ∼ N (0, σ2β), εh,j | σ2ε ∼ N (0, σ2ε), (3)

φh | σ2φ ∼G(σ2φ
−1
, σ2φ

−1
), λ | σ2λ ∼ N (0, σ2λ), (4)

σ2α, σ
2
β, σ

2
ε , σ

2
φ, σ

2
λ ∼ IG(1, 1). (5)

The joint model is fit with the rstan package in R.

4 Results

4.1 Model Checking

1. Convergence diagnostics. In Appendix Figure 7, we provide the convergence diagnostics
for parameters βch,j and λ. As shown in Figure 7, MCMC samples show good mixing
and good convergence as well.

2. Posterior predictive check. In Appendix Figure 8 to Figure 12, we show the posterior
predictive check for the mortality rate and the number of death cases. In addition, we
examine the discrepancies between the distribution of mean and standard deviation
of the number of death cases in the replicated data and in the observed data. Other
than the variance of the mortality rate, the replicated data indicates that the model fit
is a reasonable one. However, there is strong zero-inflation for procedure type 1 and
procedure type 3 in terms of the mortality rate. Accounting for this pattern may improve
the fitting of variation among mortality rate and we leave it to future directions due to
limited time.

4.2 Parameter Inference

The posterior mean and 95% credible interval of λ are -3.27 (-4.6, -2.28). Since 0 is not
included in the interval, we conclude in favor of the low volume hospitals having higher
mortality rates. To explicitly compare the effects of hospital volumes on mortality rates, we
plotted the posterior mean of αh estimated by our joint model along with the corresponding
volume Vh in Figure 1. The canonical model[4] (Geroge et al.) without any adjustment for
hospital volumes is also displayed in Figure 1 as a comparison. The posterior means for our
joint model are indicative of noticeably high mortality rates among low volume hospitals and
relatively low rates for large hospitals.

To examine the validity of clustered interactions, we compare the 95% credible interval
for αh + βch,j in two clusters and five procedure types in Figure 2. In the figure, ci; pj stands
for the overall mortality risk for hospitals within cluster i and of procedure type j, where we
get by aggregating the posterior samples of αh:ch=i + βi,j . As shown in the figure, cluster two,
i.e., hospitals with larger volumes will have lower mortality rates for more complex procedures
such as procedure type 3, 4, and 5, whereas cluster one tends to perform better in procedure
type 1, 2.
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Figure 1: Posterior mean of αh v.s. hospital volume Vh estimated by the canonical model and
the joint model.

Figure 2: The 95% credible interval for the posterior sample. ci; pj stands for the mean of the posterior
samples of αh:ch=i + βi,j .

4.3 Ranking Hospital Performance

To satisfy the overarching goal of providing patients with a decision rule about which hospital
to go to for a certain procedure type, we define the quantity below with parameters from our
primary model

mh,j = αh + βch,j (6)

Here, mh,j represents the mortality risk for taking a surgery of procedure type j at hospital h.
Hence for procedure type j, we would recommend hospitals with smallest mh,j .

To rank the hospital performance with Monte Carlo samples of mh,j , we take into account
the uncertainty during the sampling, by aggregating the ranking lists. As shown in Figure 3,
many hospitals have close ranking, but the head and tail are noticeably different. Because of
this finding, we rank the hospitals based on their probability of ranking among the top 10%
during the sampling. Specifically, for given procedure type j, let m(l)

h,j denote the mortality
risks for hospital h in the lth iteration, and we define

r
(l)
h,j =

H∑
h′=1

I(m
(l)
h,j ≤ m

(l)
h′,j), sh,j =

∑L
l=1 I(r

(l)
h,j ≤ 0.1H)

L
(7)

to represent the rank within each iteration and the ultimate performance score for hospital
h applying a procedure type j surgery. Hospitals with the highest performance score in each
procedure are listed in Table 1. The predicted hospital rankings in 1 suggest that if a child
needs surgery for a level 1 or 2 condition, the parents should go to Helen DeVos Children’s
Hospital. While if the child suffers from more complicated and higher-risk condition, UF
Health Shands Children’s Hospital or Texas Children’s Hospital are the best options.
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Best for Type 1 Helen DeVos Children’s Hospital
Best for Type 2 Helen DeVos Children’s Hospital
Best for Type 3 UF Health Shands Children’s Hospital
Best for Type 4 Texas Children’s Hospital
Best for Type 5 UF Health Shands Children’s Hospital

Table 1: Best hospital for different STAT procedure types.

Figure 3: The mean rank and one standard deviation of all hospitals of procedure type 1.

5 Discussion

As presented above, the purpose of this analysis tries to answer the question of which hospital
to go to for a given pediatric cardiovascular procedure. Both the literature and the data
suggested that patients treated at low volume hospitals stand a much lower chance of survival.
To account for this dependency, our method jointly modeled the hospital mortality rates
and hospital volumes. From our model fits, we estimate that small hospitals indeed has a
higher operation mortality rates, especially for more complex operations. These estimates are
statistically significant based on the posterior distributions.

We ranked the hospital performance for each procedure type after aggregating the ranking
list from each posterior samples to account for uncertainty. We calibrate the model by
comparing its predictions to the general advice people would rely on based on the U.S. News
hospital rankings. Specifically, we searched for the "Pediatric Cardiology & Heart Surgery"
ranking on the U.S. News. We found that Texas Children’s Hospital is ranked the number
one among all hospitals for best pediatric cardiovascular surgery, while UF Health Shands
Children’s Hospital and Helen DeVos Children’s Hospital are ranked the number 12 and 34
respectively. The predicted hospital rankings by our model are fairly consistent with the
general advice. A future extension of our work would be to check our predictions against the
general advice or the observed data with ranking-based accuracy metrics.

The key limitations we face in our analysis were data sparsity. We found that the estimated
mortality rates of the small hospitals are shrunk to resemble the national average. Although
we tried to fix the shrinkage issue by fitting a joint model of mortality rates and volumes, the
mortality rates at low volume hospitals are still quite underestimated. Ideally, we could find
better informative priors to adjust for the shrinkage issue to extend our work.

Another aspect that would be interesting to examine is to collect more informative hospital
attributes or individual patient data within each hospital. This would make our model more
robust and these additional case-mix adjustment will give us better estimates of mortality
rates.
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Appendix

Exploratory Analysis of Mortality Rates

Our first examination was in looking at the distribution of observed mortality rates across
hospitals and procedure types. From Figure 4, we see that zero mortality rates are most
often observed for low number of procedures. This creates an additional challenge because
the low mortality rates may arise from the low volumes at these hospitals instead of better
cardiovascular surgical procedures. If more patients in need of complex operations are treated
at the low-volume hospitals, the mortality rates are likely to be high.
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Figure 4: Observed mortality rates by hospital and procedure type.

Focusing on the observations with non-zero mortality rates, low volume hospitals tend to
have higher mortality rates than large hospitals. In addition, we observe the highest mortality
rates for STAT Mortality category 5 and the lowest for category 1.
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The Influence of Hospital Attributes

We wanted to select a set of variables for case-mix adjustment from the five available hospital
attributes listed in Table 2. Following the practice of O’Malley et al.[5], our criterion for
selection of case-mix adjustors is the impact factor [6], which is the product of two measures:
predictive power (the strength of the relationship between the candidate adjustor and the
outcome variable) and heterogeneity factor (the amount of variation among hospitals in the
adjustor variable). The predictive power in Table 2 is computed as the decrease in deviance
due to the addition of the given variable. Variation in Table 2 is obtained by first stratifying
the hospitals based on the given variable and then compute the F-value of the one-way ANOVA
test among the varying strata. We required a minimum impact factor of 1 for a variable to be
included. Therefore, we only chose "Number of Beds" and "Cardiovascular Surgery Rating"
to include in our joint model. The estimated posterior means and 95 % credible intervals of
"Number of Beds" and "Cardiovascular Surgery Rating" are −0.1(−0.26, 0.07) and 0(0, 0).
Therefore, we chose not to include them in our final model.

Hospital Attributes Predictive Power Variation Impact Factor

NICU Level 0.103 0.083 0.008
Number of Beds 6.888 0.811 5.586
Cardiovascular Surgery Rating 10.717 1.189 12.743
Case-Mix Index 0.0295 0.917 0.027
Urban/Rural 0.243 0.928 0.225

Table 2: Computed impact factors of the hospital attributes for case-mix adjustment.

Predicted Mortality Rates

We plotted the predicted mortality rates by hospital and procedure type with our primary
model in Figure 5. Note that Figure 5 roughly captures the trend in Figure 4, although the
mortality rates of procedure 3, 4 and 5 in low volume hospitals are underestimated by our
model due to shrinkage issues. Improving the shrinkage here is a future direction we are
interested to work on.
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Figure 5: Predicted mortality rates by hospital and procedure type.
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Figure 6: Mortality rate within each procedure category. Hospital mortality rates increase
with the increasing level of STAT Mortality Category.

Sensitivity Analysis

We determine the robustness of our method by examining the extent to which results are
affected by changes in the volume threshold τ and, consequently, the cluster membership
discussed in Section 3. Table 3 shows that there are not noticeable discrepancies in posterior
parameter estimates for the varying level of τ . Therefore, our estimates of λ and βch,j are
quite stable and we are confident with our findings based on the two parameters.

Volume Threshold τ λ β1,1 β1,2 β1,3 β1,4 β1,5 β2,1 β2,2 β2,3 β2,4 β2,5

0.1 -3.44 -4.66 -2.98 -1.52 -0.80 -0.18 -3.53 -2.10 -1.67 -0.58 0.29
0.2 -3.20 -4.39 -2.68 -1.68 -0.54 0.29 -3.35 -1.93 -1.51 -0.44 0.43
0.3 -3.05 -3.49 -2.30 -1.52 -0.48 0.23 -3.27 -1.80 -1.39 -0.31 0.58
0.4 -2.71 -3.13 -1.92 -1.23 -0.31 0.62 -2.98 -1.49 -1.09 0.02 0.87
0.5 -2.85 -3.15 -2.00 -1.29 -0.33 0.5 -3.13 -1.58 -1.22 -0.10 0.78

Table 3: Effects of volume threshold τ on posterior means of model parameters.

We also assessed the robustness of our ranking system by checking whether the hospital
rankings change with different values of τ . Table 4 displays the best hospital for the given
procedure type predicted by our joint model. Although the best hospitals vary slightly among
different τ ’s, they are primarily limited to the "Texas Children’s Hospital", "UF Health Shands
Children’s Hospital" and "Helen DeVos Children’s Hospital". This suggests that the estimated
rankings by our model are fairly consistent.

Fitted Results

Table 5 shows the selected parameters credible intervals and convergence diagnostics statistics.
The result is based on 3 chains, 5000 iterations and 1000 warm-up per chain.

Convergence Diagnostic

We show the traceplot of λ and β from the primary model. As shown in Figure 7, MCMC
samples show good mixing and good convergence as well.
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0.1 0.2 0.3

Best for Type 1 Helen DeVos Children’s Hospital Helen DeVos Children’s Hospital UF Health Shands Children’s Hospital
Best for Type 2 Helen DeVos Children’s Hospital Helen DeVos Children’s Hospital Helen DeVos Children’s Hospital
Best for Type 3 Texas Children’s Hospital UF Health Shands Children’s Hospital Texas Children’s Hospital
Best for Type 4 UF Health Shands Children’s Hospital Texas Children’s Hospital Texas Children’s Hospital
Best for Type 5 Penn State Children’s Hospital UF Health Shands Children’s Hospital Helen DeVos Children’s Hospital

0.4 0.5

Best for Type 1 Texas Children’s Hospital Texas Children’s Hospital
Best for Type 2 Helen DeVos Children’s Hospital Helen DeVos Children’s Hospital
Best for Type 3 Texas Children’s Hospital Texas Children’s Hospital
Best for Type 4 Helen DeVos Children’s Hospital Texas Children’s Hospital
Best for Type 5 Texas Children’s Hospital Texas Children’s Hospital

Table 4: Effects of volume threshold τ on hospital ranking for different procedures.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

lambda -3.20 0.04 0.58 -4.57 -3.51 -3.11 -2.79 -2.32 170.03 1.01
beta[1,1] -4.39 0.03 0.63 -5.69 -4.80 -4.37 -3.96 -3.23 508.02 1.00
beta[1,2] -2.68 0.02 0.40 -3.47 -2.95 -2.68 -2.40 -1.89 263.20 1.01
beta[1,3] -1.68 0.02 0.42 -2.52 -1.97 -1.68 -1.39 -0.87 300.38 1.01
beta[1,4] -0.54 0.02 0.35 -1.20 -0.78 -0.55 -0.31 0.15 198.52 1.01
beta[1,5] 0.29 0.02 0.41 -0.51 0.00 0.29 0.57 1.09 287.17 1.01
beta[2,1] -3.35 0.03 0.39 -4.11 -3.61 -3.36 -3.09 -2.56 174.92 1.01
beta[2,2] -1.93 0.03 0.38 -2.65 -2.18 -1.93 -1.68 -1.17 163.04 1.01
beta[2,3] -1.51 0.03 0.38 -2.24 -1.77 -1.52 -1.26 -0.76 165.56 1.01
beta[2,4] -0.44 0.03 0.38 -1.15 -0.70 -0.45 -0.19 0.31 160.57 1.01
beta[2,5] 0.43 0.03 0.38 -0.28 0.18 0.42 0.68 1.19 163.55 1.01
varBeta 2.30 0.02 0.62 1.38 1.86 2.20 2.63 3.79 961.46 1.00
varLambda 4.52 0.09 6.66 1.18 2.08 3.04 4.83 16.57 4971.00 1.00

Table 5: Selected parameters credible intervals and convergence diagnostics statistics. The result is
based on 3 chains, 5000 iterations and 1000 warm-up per chain.

Posterior Predictive Check

We show the posterior predictive check for the mortality rate and the number of death cases.
We also examine the distribution of mean and standard deviation for the mortality rate and
the number of death cases. Other than the variance of the mortality rate, the replicated data
indicates that the model fit is a reasonable one. There is strong zero-inflation for procedure
type 1 and procedure type 3 in terms of the mortality rate. We consider that accounting for
this pattern may improve the fitting of variation among mortality rate and leave it to future
directions.

Figure 7: Traceplot of λ and β in the primary model. MCMC samples show good mixing and
good convergence as well.
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Figure 8: Posterior predictive check for the mortality rate and number of death cases for
procedure type 1.

Figure 9: Posterior predictive check for the mortality rate and number of death cases for
procedure type 2.
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Figure 10: Posterior predictive check for the mortality rate and number of death cases for
procedure type 3.

Figure 11: Posterior predictive check for the mortality rate and number of death cases for
procedure type 4.
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Figure 12: Posterior predictive check for the mortality rate and number of death cases for
procedure type 5.
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